If you work in gene therapy, cell biology, or cancer research, cell transfection is likely a part of your daily routine. To that end, you want to ensure you have the highest rates of transfection efficiency.
Or, if you’re new to transfection, you might have stumbled here for some building blocks of proper techniques.
Whichever category you fall under, welcome! This guide will outline:
So, if you’re already well-versed in transfection, transfection techniques, and what affects the efficiency—amazing!—go ahead and skip to the third section where you will learn how to improve your efficiency. Otherwise, let’s begin.
Welcome to the wonderful universe of nucleic acid-delivery systems (and the powerful analytical tools they provide as a byproduct). While one article clearly isn’t enough to explore every galaxy, we can point your telescope in the right direction. Below, let’s focus on the basics:
Class is now in session.
Transfection is the process by which foreign nucleic acids (RNA, DNA, etc.) are transferred into a healthy cell, to produce a “genetically modified cell.” The term itself is a combination of “trans” and “infection,” which might glean some intuition into its operation.
Though it’s considered a technique, its far-reaching consequences mark it as more of a powerful, analytical tool. Cell transfection allows researchers to interact with, exchange, and hyper-analyze small chains of nucleic acids. Why is this so powerful?
Let’s use human DNA and basic arithmetic to consider this:
Tough problem to crack—enter, the transfection of cells.
During a transfection, foreign nucleic acid chains into a healthy cell. The nucleic acids then combine with the existing DNA in the cell, creating a genetically modified cell. Researchers can then study the changed properties of the cell. Because the cell nucleic acid sequence was known beforehand, researchers can further analyze the gene function and protein expression of the transfected cell.
The method mentioned above, while simplified, is only one type of nucleic acid introduction method: stable transfection. The other type, transient transfection, is an impermanent way to integrate genes.
Which transfection method you choose for your experiment heavily depends on two factors: what you’re measuring and what cell population you’re using.
Related: How to Complete Cell Cycle Analysis via Flow Cytometry
As a final part of this introductory course, let’s break down some of the different processes by which transfection of cells can occur. This will provide the necessary baseline understanding of the different factors of cell transfection efficiency (in Part 2).
With the basics now thoroughly ingrained into your noggin, let’s dive into the juicy details about transfection efficiency.
While each transfection procedure listed above will come with its own advantages and disadvantages, as well as its own set of techniques to improve the efficiency rate, there are overall factors that contribute. This high-level analysis is what will be most helpful here. To that end, let’s discuss cell transfection efficiency:
Within the different processes (biological, chemical, physical) there are continual improvements in technology and technique. For example, every advancement in optic technology and laser precision is going to have a beneficial impact on photo transfection.
Similarly, once we create the shrink ray, we can hand deliver these nucleic acids and use our equally tiny screwdrivers to lock the nucleic acids in the correct place, all without harming the cell.
But until then, here the accepted methods of increasing the cell transfection efficiency are:
As mentioned above, cells that are separated and counted are given the short end of the cellular stick. Cell viability is incredibly important. Within industry-standard flow cytometers, they are exposed to excessive pressures that cause wear and tear to the cell wall, as well as damage the internal organelles. They are pushed and prodded and, in the end, experimented on. Without anthropomorphizing these individual cells (aka, don’t feel bad for them), it’s easy to see why this won’t produce the best results.
In this case, technology is the easiest solution to healthy cells—NanoCellect’s WOLF G2 Cell Sorter was created to solve this exact problem. Its design was intended to sort cells with:
To take high-quality pictures, you need a high-quality camera. The same works for cell research. To have a healthy cell population, you need a high-quality cell sorter.
Related:
Next Generation Sequencing and Single Cell Technology
Single Cell Multiomics Analysis
There are two parts to this transfection efficiency equation. Optimizing the cell population is one, and optimizing the nucleic acids is the other. For one, you want to ensure that the DNA and RNA you’re introducing into the cell is as close to homogenous as possible. Otherwise, there are too many variables to account for when analyzing the results, and the transfection efficiency will be muddied by different types of genes entering the cell.
Prepare a purified form of nucleic acid chains and then prepare different concentrations to test on cell assays.
For example, by preparing concentrations incrementally from 25-250 ng of nucleic acid to be tested against your cell populations, you can optimize the transfection efficiency per cell type.
When too many cells are bunched up within a single well, you may experience a low transfection rate due to contact inhibition. Contact inhibition is what prevents cells from proliferating without control. It’s why the skin on our bodies doesn’t continue to multiply until we’re all monsters (sorry to make that graphic).
In a well, you don’t want to fill the entire well with the cell population, otherwise you may inhibit some of the regulatory functions of cells: proliferation being one; gene uptake being another.
Attempt to have around 60-80% confluency for optimal transfection efficiency. To set this up, a flow cytometer is used to sort and count cell populations in cell assays.
Whether you work individually in a lab or you’re part of a larger team, having the right transfection technology is a critical component to cell research. And with any of the normal fields-cell biology, cancer research, drug testing, immunophenotyping, etc.-you need a high transfection efficiency. This will not only improve your results in-house, but it will hasten the process from research to publication.
Partnering with NanoCellect means partnering with the best in flow cytometry and cell sorting technology. If you need to improve your transfection efficiency, start by improving your cell populations. The WOLF Cell Sorter is a reliable place to start.
Sources:





